
Stephen Kitt, Red Hat

Building robust applications 
on top of OpenDaylight



Robust?



Well-tested



Re-tested



Automatically tested



Automated tests:
tests carried out without human intervention



More automated tests → more robust applications?



More automated tests → more time for manual tests!



More manual tests → more automated tests



More automated tests → fewer regressions



Automated tests in OpenDaylight

● Unit tests
● Integration tests
● CSIT



Unit tests



Small?



Single behaviour



Close to the code...



… but not tied to the implementation



Side benefits of unit tests

● “Implementation” of a specification
● API smoke tests



Unit tests in OpenDaylight



Each project's responsibility



~30,000 unit tests



Run for every commit
(submitted for review)



(but only the affected project's tests)





Required to pass before merge





Tracked in Sonar





Integration tests



Integrating multiple behaviours



Tests closer to end users' expectations
(use cases)



Side benefits of integration tests

● “Implementation” of a use case
● More API smoke tests



Integration tests in OpenDaylight



Each project's responsibility



~300 integration tests



Some requiring non-automated setup



Most run for every commit



Most required to pass before merge



Not distinguished from unit tests in Gerrit



Tracked separately in Sonar





CSIT
Continuous System Integration Tests



Integration tests with external requirements



Full-blown system tests: clustering, scalability, longevity...



CSIT in OpenDaylight



Release commitment

● At least one system test for each OSGi feature
● Large-scale system tests for

● Functionality
● Clustering
● Scalability
● Performance
● Longevity/stability



Managed by each project and the Integration/Test project



~4,000 system tests



Tests run daily
(no gating)





Most tests use Robot Framework
http://robotframework.org/

http://robotframework.org/




External testing in OpenDaylight



External CI connected to ODL Gerrit



Notifications from Gerrit...



… and the ability to vote in Gerrit



Using all this to build robust applications



Test upstream when possible



Contribute your test cases



Writing good tests



Test for behaviour, not implementation





Test your code, not the infrastructure



Use the infrastructure









Useful pattern: given, when, then



Given a certain state
(all your test-specific setup code goes here)



When something happens
(invoke the API you want to test)



Then verify the effect
(assert and verify)





If your API doesn't change, your tests shouldn't change



API change with no functionality change
↓

the “when” part of your test changes



Functionality change
↓

the “then” part of your test changes



Complex code is worth making testable



Maintain your tests as you maintain your code



Maintain your tests as you maintain your documentation



Stephen Kitt, Red Hat
<skitt@redhat.com>

Thank you!


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78

