
Stephen Kitt, Red Hat

Building robust applications 
on top of OpenDaylight



Robust?



Well-tested



Re-tested



Automatically tested



Automated tests:
tests carried out without human intervention



More automated tests → more robust applications?



More automated tests → more time for manual tests!



More manual tests → more automated tests



More automated tests → fewer regressions



Automated tests in OpenDaylight

● Unit tests
● Integration tests
● CSIT



Unit tests



Small?



Single behaviour



Close to the code...



… but not tied to the implementation



Side benefits of unit tests

● “Implementation” of a specification
● API smoke tests



Unit tests in OpenDaylight



Each project's responsibility



~30,000 unit tests



Run for every commit
(submitted for review)



(but only the affected project's tests)





Required to pass before merge





Tracked in Sonar





Integration tests



Integrating multiple behaviours



Tests closer to end users' expectations
(use cases)



Side benefits of integration tests

● “Implementation” of a use case
● More API smoke tests



Integration tests in OpenDaylight



Each project's responsibility



~300 integration tests



Some requiring non-automated setup



Most run for every commit



Most required to pass before merge



Not distinguished from unit tests in Gerrit



Tracked separately in Sonar





CSIT
Continuous System Integration Tests



Integration tests with external requirements



Full-blown system tests: clustering, scalability, longevity...



CSIT in OpenDaylight



Release commitment

● At least one system test for each OSGi feature
● Large-scale system tests for

● Functionality
● Clustering
● Scalability
● Performance
● Longevity/stability



Managed by each project and the Integration/Test project



~4,000 system tests



Tests run daily
(no gating)





Most tests use Robot Framework
http://robotframework.org/

http://robotframework.org/




External testing in OpenDaylight



External CI connected to ODL Gerrit



Notifications from Gerrit...



… and the ability to vote in Gerrit



Using all this to build robust applications



Test upstream when possible



Contribute your test cases



Writing good tests



Test for behaviour, not implementation





Test your code, not the infrastructure



Use the infrastructure









Useful pattern: given, when, then



Given a certain state
(all your test-specific setup code goes here)



When something happens
(invoke the API you want to test)



Then verify the effect
(assert and verify)





If your API doesn't change, your tests shouldn't change



API change with no functionality change
↓

the “when” part of your test changes



Functionality change
↓

the “then” part of your test changes



Complex code is worth making testable



Maintain your tests as you maintain your code



Maintain your tests as you maintain your documentation



Stephen Kitt, Red Hat
<skitt@redhat.com>

Thank you!
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