

Experiences in using Neutron ODL

Wojciech Dec – wdec@cisco.com

July 2015

Setup Overview

A Single Highly Available **Openstack Cluster for NFV**

Scope of Use: An orchestrated NFV solution using Openstack Cluster with ODL against multiple virtual switches

Used/tested at scale of 100 ports per

Based on OS Icehouse. Progressing to

- Current Openstack ML2 ODL driver is single threaded and blocks Neutron Server (post-commit) until ODL responds
 - Throughput of Neutron Requests gated by ODL ML2
 - Perhaps not a major issue for Network or subnets
- Can be addressed by running multiple Neutron servers but...
 - Concurrency and race-conditions...

• DB Synchronization concurrency issue

- Current ML2 ODL driver synch mechanism only run when triggered by a new Neutron event
 - leads to repeat failures

- No switch type independent configuration for mapping of Neutron physical networks to physical interfaces
 - Current solution: Network Configuration being switch specific and stored on compute nodes
 - Proposed Solution: An ODL based map configuration API, independent of switch type

- No feedback to Openstack regarding network rendering errors
 - Success of Neutron transaction <> Successfully rendered Network configuration. Openstack Neutron state not reflecting actual state

 Particularly evident with OVS; network rendering only after OVSDB update (which may fail)

 No ordered message delivery to ODL leading to "oddball" failures (i.e. race condition)

