
www.opendaylight.org

OpenDayLight
Controller project Overview
Giovanni Meo (gmeo@cisco.com)

September 2013

www.opendaylight.org
2

 Controller project in OpenDayLight context
 Controller project goals and how they map in reality
 Service Abstraction Layer
 Q&A

Agenda

2

www.opendaylight.org
3

 Controller project in OpenDayLight context
 Controller project goals and how they map in reality
 Service Abstraction Layer
 Q&A

Agenda

3

Base Network Service Functions

Management
GUI/CLI

Controller Platform

Southbound Interfaces
& Protocol Plugins

OpenDaylight APIs (REST)

DOVE
Mgr

Data Plane Elements
(Virtual Switches,
Physical Device

Interfaces)

Service Abstraction Layer (SAL)
(plug-in mgr., capability abstractions, flow programming, inventory, …)

OpenFlow
1.0 1.3 LISP

Topology
Mgr

Stats
Mgr

Switch
Mgr

Host
Tracker

Shortest
Path

Forwarding

VTN
Coordinator

Affinity
Service

Network Applications
Orchestration & Services

OpenStack
Neutron

OpenFlow Enabled
Devices

VTN
Manager

VTN: Virtual Tenant Network
DOVE: Distributed Overlay Virtual Ethernet
DDoS: Distributed Denial Of Service
LISP: Locator/Identifier Separation Protocol
OVSDB: Open vSwitch DataBase Protocol
BGP: Border Gateway Protocol
PCEP: Path Computation Element Communication Protocol
SNMP: Simple Network Management Protocol

LISP
Service

NETCONF BGP-LS

Additional Virtual &
Physical Devices

 OpenDayLight Components

SNMP

DDoS
Protection

Open vSwitches

OVSDB PCEP

OpenStack Service
Network
Config

Base Network Service Functions

Management
GUI/CLI

Controller
Platform

Southbound
Interfaces
& Protocol

Plugins

OpenDaylight APIs (REST)

DOVE
Mgr

Data Plane Elements
(Virtual Switches,
Physical Device

Interfaces)

Service Abstraction Layer (SAL)
(plug-in mgr., capability abstractions, flow programming, inventory, …)

OpenFlow
1.0 1.3 LISP

Topology
Mgr

Stats
Mgr

Switch
Mgr

Host
Tracker

Shortest
Path

Forwarding

VTN
Coordinator

Affinity
Service

Network
Applications

Orchestration &
Services

OpenStack
Neutron

OpenFlow Enabled
Devices

VTN
Manager

VTN: Virtual Tenant Network
DOVE: Distributed Overlay Virtual Ethernet
DDoS: Distributed Denial Of Service
LISP: Locator/Identifier Separation Protocol
OVSDB: Open vSwitch DataBase Protocol
BGP: Border Gateway Protocol
PCEP: Path Computation Element Communication Protocol
SNMP: Simple Network Management Protocol

LISP
Service

NETCONF BGP-LS

Additional Virtual &
Physical Devices

 Controller project Zoom

SNMP

DDoS
Protection

Open vSwitches

OVSDB PCEP

OpenStack Service
Network
Config

Controller
Project Pieces InfraStructure ex.

C
lustering, C

onfiguration etc.

www.opendaylight.org
6

Controller – basic facts

6

 Written in Java to leverage the huge amount of existing 3rd
party to implement for example clustering or REST
framework etc.

 NOT only JAVA: Any JVM (Java Virtual Machine) language
can be used to create components for the controller

 Non-JVM components also present in OpenDayLight, which
interact toward the rest of the system via northbound APIs
or JNI/JNA

 Built to be a middleware where integrators or users can add
their added value

www.opendaylight.org
7

 Includes(cont) :

 Stats Manager

 GUI

 Topology Manager

 and more…

 Controller Release Plan

Controller – list of components

7

 Base OSGI Framework

 Clustering infrastructure

 Service Abstraction
Layer (SAL)

 OF 1.0 SB Plugin

 Switch Manager
(inventory repository)

 Hosttracker

 Forwarding Rules
Manager

https://wiki.opendaylight.org/view/OpenDaylight_Controller:Release_Plan_2013

www.opendaylight.org
8

 Controller project in OpenDayLight context
 Controller project principles and how they map in reality
 Service Abstraction Layer
 Q&A

Agenda

8

www.opendaylight.org
9

Controller goals

9

 Runtime Modularity and
Extensibility

 Extensible Northbound
layer

 Highly available and
fault tolerant, with
horizontal scalability
properties

 Support for Multi-
Tenancy

 Multi-Protocol

 Evolutionary

 Transactional from
application point of view

www.opendaylight.org
10

Controller goals in practice
[Runtime modularity and extensibility]

10

 Modularity and Extensibility achieved via the usage of
OSGi framework as a base for developing all the
controller components

 Every components of the controller is an OSGi bundle i.e
a self-contained unit that can be installed/uninstalled at
runtime

 No core components, only components with an high
reference count

www.opendaylight.org
11

Controller goals in practice
[Extensible northbound layer]

11

 REST services implemented via a Servlet container

 Allows to insert at runtime HTTP resources to be
manipulated via REST

 Why? Because not every one has same needs, and
differentiations is created by the little devilish details

 Northbound for co-located apps implemented via OSGi
services, which can be added and remove at runtime

www.opendaylight.org
12

Controller goals in practice
[HA and horizontally scalable]

12

 High availability achieved by allowing to create cluster of
controllers

 Network elements can connect to any controller in the
cluster to spread the load

 Network elements can be multi-homed to multiple
controllers node. Only 1 controller will control the network
element. (1+N redundancy on southbound)

 Applications can connect to any controller node and get
the job done (N redundancy on northbound)

 States can be replicated in every node of the cluster or
can be distributed using a DHT approach.

www.opendaylight.org
13

Controller goals in practice
[Support for multi-tenancy]

13

 A controller cluster can be partitioned in multiple
containers

 Each container has an instance of all the components
running independently from each other

 Allows separating the same cluster in multiple
management domains (Network slicing)

www.opendaylight.org
14

Controller goals in practice
[Multi-Protocol]

14

 Controller project is built to allow multiple SDN protocols,
existing or yet to come.

 Achieved by defining commons aspects of the different
SDN protocol and mapping a protocol to one or more of
this aspects

OpenFlow BGP-LS
+ PCEP OVSDB

Topology

Statistics

Flow Programming

Bridge Configuration
Services

Protocol
Plugins
To services
mapping

www.opendaylight.org
15

Controller goals in practice
[Evolutionary]

15

 Every bundle constituting the controller base is either and
API bundle or an implementation bundle

 Each bundle has a version attached (mandated by OSGi
framework)

 Multiple versions of the same API can coexist at the
same time in the system so if a new implementation is
provided still an adapter can be supplied to support older
applications. It’s by design that not all the bundles can
migrate at the same time to newer versions.

 On the REST layer every API is versioned and multiple
versions for the same API can be installed at the same
time, to support legacy apps along with new ones.

www.opendaylight.org
16

Controller goals in practice
[Transactional]

16

 Every request made via northbound API to the controller
will be transactional, i.e all completely done or none
done.

 Important so the applications interacting with the
controller can assume when they can start injecting traffic
for example. Or to know when a security policy has been
installed and traffic will be expected to be blocked.

www.opendaylight.org
17

 Controller project in OpenDayLight context
 Controller project principles and how they map in reality
 Service Abstraction Layer
 Q&A

Agenda

17

www.opendaylight.org
18

Service Abstraction Layer

18

 Tiny layer of controller project which enables the multi-
protocol support

 Enable a modules co-located on the controller to program
a network element based on its capabilities

Service Abstraction Layer

O1 OF1 OF2 OF3 O2

Application

Forwarding Rules
Manager

Network Bridge
Config

Create BR1 on O1;
Create BR1 on O2;
Create BR1 on OF1;

www.opendaylight.org
19

Service Abstraction Layer - evolution

19

 Currently services of a devices are defined via a Java
interface

 Moving forward the capability of the device will be
modeled using an appropriate modeling language like
Yang (MD-SAL)

 Modeling language will then auto-generate the interfaces
and from that other information like REST representation
for data exchanged and so on.

www.opendaylight.org
20

 Controller project in OpenDayLight context
 Controller project principles and how they map in reality
 Service Abstraction Layer
 Q&A

Agenda

20

www.opendaylight.org

 More information and to join:
 wiki.opendaylight.org

 Keep informed and join the conversation
 IRC: #opendaylight on Freenode
 Open mailing lists: lists.opendaylight.org
 @openDaylightSDN
 #OpenDaylight

21

Resources

21

http://www.opendaylight.org
http://www.opendaylight.org
http://lists.opendaylight.org/
http://www.twitter.com/opendaylightsdn
http://www.twitter.com/opendaylightsdn

	OpenDayLight�Controller project Overview�Giovanni Meo (gmeo@cisco.com)
	Agenda
	Agenda
	Slide Number 4
	Slide Number 5
	Controller – basic facts
	Controller – list of components
	Agenda
	Controller goals
	Controller goals in practice�[Runtime modularity and extensibility]
	Controller goals in practice�[Extensible northbound layer]
	Controller goals in practice�[HA and horizontally scalable]
	Controller goals in practice�[Support for multi-tenancy]
	Controller goals in practice�[Multi-Protocol]
	Controller goals in practice�[Evolutionary]
	Controller goals in practice�[Transactional]
	Agenda
	Service Abstraction Layer
	Service Abstraction Layer - evolution
	Agenda
	Resources

