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 OpenDaylight projects are quite heterogeneous: platform, 

tools, plugins, apps, etc… -> they have different test needs.

 Projects define one or more features -> we have to test them 

individually and together.

 We leave users freedom to select features -> we need an 

strategy to test a non-rigid distribution.

 OpenDaylight has a common CI process for all projects -> 

tests should in general be part of the CI.

 Number of projects duplicates every release -> We need an 

strategy that can scale.

Facts
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 Instead of verifying projects, test user-facing features.

 Test single feature enabled to identify issues in a feature itself.

 Test all features enabled to identify feature interferences.

 For a given project, test after:

 A change in the project code (submit or merge). 

 A change (merge) in an upstream project.

 Be selective with the tests we run:

 A change in a “stem” project will trigger test on many features.

 A change in a “leaf” project will trigger test on few concerned 

features.

 Projects will be responsible and will own their system test. 

High Level Strategy

3



Created by Jan Medved
www.opendaylight.org

 We define 2 integration features for test purposes:

 compatible-with-all -> useful for projects to test their 

features with other features.

 all = compatible-with-all + incompatible features -> used 

to test features/bundles definition in integration.

 Integration features are currently hidden to users.

Distribution Assembly
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CI Infrastructure
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Build test occurs during project code build. Examples are Junit, 

PAX-EXAM or single feature install tests

Every project in OpenDaylight defines 3 build jobs:

 Verify job -> builds the project code and passes build tests 

on code submit

 Merge job -> builds the project code and passes build tests 

on code merge. In addition it will upload generated artifacts 

to Nexus repository.

 Integration job -> builds the project code and passes build 

tests after a merge in an upstream project

Build Test
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System test requires a distribution and an automation that installs 

controller and executes tests against network tools. 

Every project in OpenDaylight will define 2 jobs:

 Distribution job -> builds the integration code and therefore the 

official distribution

 System Test Jobs -> For every project user-facing feature 

(essential functionality) we will create 2 system test jobs:

 feature-only test -> Installs single feature with required 

dependencies and runs functionality planned test

 feature-all test -> Installs odl-integration-compatible-with-all 

+ feature and runs functionality planned test

System Test
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Test Triggers
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 Code sanity and code coverage reports are collected daily to 

Sonar

 All system test code will be stored in the Integration repo, we 

can quantify the amount of test per project

 Number of critical bugs per project and bugs trends

 Performance numbers 

Quality metrics
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