
Created by Jan Medved
www.opendaylight.org

Integration & Test 

Strategy for Lithium

Luis Gomez, Brocade



Created by Jan Medved
www.opendaylight.org

 OpenDaylight projects are quite heterogeneous: platform, 

tools, plugins, apps, etc… -> they have different test needs.

 Projects define one or more features -> we have to test them 

individually and together.

 We leave users freedom to select features -> we need an 

strategy to test a non-rigid distribution.

 OpenDaylight has a common CI process for all projects -> 

tests should in general be part of the CI.

 Number of projects duplicates every release -> We need an 

strategy that can scale.

Facts

2



Created by Jan Medved
www.opendaylight.org

 Instead of verifying projects, test user-facing features.

 Test single feature enabled to identify issues in a feature itself.

 Test all features enabled to identify feature interferences.

 For a given project, test after:

 A change in the project code (submit or merge). 

 A change (merge) in an upstream project.

 Be selective with the tests we run:

 A change in a “stem” project will trigger test on many features.

 A change in a “leaf” project will trigger test on few concerned 

features.

 Projects will be responsible and will own their system test. 

High Level Strategy

3



Created by Jan Medved
www.opendaylight.org

 We define 2 integration features for test purposes:

 compatible-with-all -> useful for projects to test their 

features with other features.

 all = compatible-with-all + incompatible features -> used 

to test features/bundles definition in integration.

 Integration features are currently hidden to users.

Distribution Assembly

4



Created by Jan Medved
www.opendaylight.org

CI Infrastructure

5

System Test

(Robot FW)

Post test 
results

Run test 
suite

Project Build

(Jenkins) 

Code 

management

(GIT/Gerrit)

Gerrit code 
submit or 
merge

Artifact 

Repository

(Nexus) 

Upload 
artifacts

Download 
artifacts

Upstream 

Project Build 

(Jenkins)

Upstream 
project merge 

Distribution Build

(Jenkins) 

Artifact 

Repository

(Nexus) 

Upload 
artifacts

Download 
artifacts

project 
merge



Created by Jan Medved
www.opendaylight.org

Build test occurs during project code build. Examples are Junit, 

PAX-EXAM or single feature install tests

Every project in OpenDaylight defines 3 build jobs:

 Verify job -> builds the project code and passes build tests 

on code submit

 Merge job -> builds the project code and passes build tests 

on code merge. In addition it will upload generated artifacts 

to Nexus repository.

 Integration job -> builds the project code and passes build 

tests after a merge in an upstream project

Build Test

6



Created by Jan Medved
www.opendaylight.org

System test requires a distribution and an automation that installs 

controller and executes tests against network tools. 

Every project in OpenDaylight will define 2 jobs:

 Distribution job -> builds the integration code and therefore the 

official distribution

 System Test Jobs -> For every project user-facing feature 

(essential functionality) we will create 2 system test jobs:

 feature-only test -> Installs single feature with required 

dependencies and runs functionality planned test

 feature-all test -> Installs odl-integration-compatible-with-all 

+ feature and runs functionality planned test

System Test

7



Created by Jan Medved
www.opendaylight.org

Test Triggers

8

Code Merge

Release creation

Merge build
Distribution 

build

feature-only test

feature-only test 

feature-all test

For all projects

Code Submit Verify build

Integration build

feature-all test

For all projects 

in downstream

feature-only test

feature-all test

For all projects 

in downstream

feature-only test

feature-all test



Created by Jan Medved
www.opendaylight.org

 Code sanity and code coverage reports are collected daily to 

Sonar

 All system test code will be stored in the Integration repo, we 

can quantify the amount of test per project

 Number of critical bugs per project and bugs trends

 Performance numbers 

Quality metrics

9


